MATH5010 Linear Analysis (2022-23): Homework 6. Deadline: 13 Nov 2022

Important Notice:

\& The answer paper must be submitted before the deadline.
© The answer paper MUST BE sent to the CU Blackboard.

1. Let X and Y be the normed spaces over \mathbb{R}. For each element $(x, y) \in X \times Y$, define the norm by $q(x, y):=\max (\|x\|,\|y\|)$. (Recall: $(x, y)+\left(x^{\prime}, y^{\prime}\right):=\left(x+x^{\prime}, y+y^{\prime}\right)$ and $\alpha(x, y):=(\alpha x, \alpha y)$ for $(x, y),\left(x^{\prime}, y^{\prime}\right) \in X \times Y$ and $\alpha \in \mathbb{R}$.) Let $\pi: X \times Y \rightarrow X$ be a linear map defined by $\pi(x, y):=x$ for $(x, y) \in X \times Y$.
Show that the map π is bounded and find the norm $\|\pi\|$.
2. Let $\ell_{2}:=\left\{x:\{1,2 \ldots\} \rightarrow \mathbb{R}: \sum|x(n)|^{2}<\infty\right\}$ and put $\|x\|_{2}:=\sqrt{\sum|x(n)|^{2}}$. Let $X:=\left\{x \in \ell_{2}: \sum_{n=1}^{\infty}|n x(n)|^{2}<\infty\right\}$. Define a linear operator $T: X \rightarrow \ell_{2}$ by

$$
\operatorname{Tx}(n):=n x(n) \quad \text { for } x \in X \text { and } n=1,2, \ldots
$$

(i) Is T a bounded operator? (Explain!)
(ii) Show that the inverse $T^{-1}: \ell_{2} \rightarrow X$ is bounded and find $\left\|T^{-1}\right\|$.

$$
* * * \text { End } * * *
$$

