MATH5010 Linear Analysis (2022-23): Homework 6. Deadline: 13 Nov 2022

Important Notice:

 \clubsuit The answer paper must be submitted before the deadline.

♠ The answer paper MUST BE sent to the CU Blackboard.

- 1. Let X and Y be the normed spaces over \mathbb{R} . For each element $(x, y) \in X \times Y$, define the norm by $q(x, y) := \max(\|x\|, \|y\|)$. (Recall: (x, y) + (x', y') := (x + x', y + y') and $\alpha(x, y) := (\alpha x, \alpha y)$ for $(x, y), (x', y') \in X \times Y$ and $\alpha \in \mathbb{R}$.) Let $\pi : X \times Y \to X$ be a linear map defined by $\pi(x, y) := x$ for $(x, y) \in X \times Y$. Show that the map π is bounded and find the norm $\|\pi\|$.
- 2. Let $\ell_2 := \{x : \{1, 2...\} \to \mathbb{R} : \sum |x(n)|^2 < \infty\}$ and put $||x||_2 := \sqrt{\sum |x(n)|^2}$. Let $X := \{x \in \ell_2 : \sum_{n=1}^{\infty} |nx(n)|^2 < \infty\}$. Define a linear operator $T : X \to \ell_2$ by

Tx(n) := nx(n) for $x \in X$ and n = 1, 2, ...

- (i) Is T a bounded operator? (Explain !)
- (ii) Show that the inverse $T^{-1}: \ell_2 \to X$ is bounded and find $||T^{-1}||$.

* * * End * * *